



#### Programs in Review

# Transmission Program Level Costs for 2004-2006

"The Value of Transmission."







#### July 2002 Meetings

July 17<sup>th,</sup> 2002 Idaho Falls TBL Representative: Kevin Ward

1:00 to 5:00 p.m.

July 18<sup>th</sup>, 2002 Spokane TBL Account Executive: Sally Long

8:30 a.m. to 12:30 p.m.

July 19<sup>th</sup>, 2002 Portland TBL Representative: Kevin Ward

8:30 a.m. to 12:30 p.m.

July 24th, 2002 Kennewick TBL Account Executive: Brian Altman

1:00 to 5:00 p.m.

July 25<sup>th</sup>, 2002 Tacoma TBL Account Executive: Bob Lahmann

8:30 a.m. to 12:30 p.m.





**10** min. Welcome and Purpose of the Meeting – AE

**20 min. History of TBL Costs** – Alan Courts,

TBL Vice-President for Engineering and Technical Services

**1 hour** Infrastructure - Vickie VanZandt, TBL Vice-President

for Operations and Planning

15 min. Break

**1 hour** The Future of TBL O&M - Fred Johnson,

TBL Vice-President for Field Services

**1 hour** Overall Program Levels — Chuck Meyer,

TBL Vice-President For Marketing and Sales

**10** min. **Closing Remarks -** AE

BONNEVILLE POWER ADMINISTRATION

Note: Time will be provided after each session for Q&A.





#### Programs In Review

# History of TBL Programs and Costs FY 1992 to Present

"Where we have been"

**Alan Courts** 

Vice President for Engineering and Technical Services







### What Has Driven Changes?

- 1992 Energy Policy Act
- 1996 Western system outages/reliability standards strengthened. Watershed events – summer 1996
- 2000-01 Western electricity crisis
- Today New era







#### What Changed For TBL

- Nature of the work
- System needs new additions
- Stressed and aging system
- Aging workforce
- Electric utility industry is changing







#### This Is What We Did...

- 1992 to 1998 Capital Program dropped by 66% and staff levels dropped by 36%
- 1999 Pushed system to operating at or near capacity
- 2002 2003 rate case settlement recognized increased investment and spending needed to maintain reliable system
- Today No substantial transmission infrastructure built since 1987, despite NW growth
  - Today Grid is stressed to its limit



## Our Direction Remains Constant



- 1999 program review System margin gone
- FY 2002-03 –TBL embarked on major infrastructure projects needed
  - Also, focused on Reliability Centered
     Maintenance
- FY 2003-06 Focus on reliability, safety, adequacy and availability, while controlling costs





#### Programs in Review

#### Capital Program

Vickie VanZandt
Vice President Operations & Planning





## Key Drivers for the Capital Program



- Replace aging facilities
  - Availability
  - Safety
  - Economics
- Infrastructure Program
  - Keep the lights on –reinforce the system to comply with national reliability standards
  - Interconnect needed new generation
  - Remove constraints that limit economic trade and our ability to maintain the system





# TBL Capital Projects Historical & Future Trend





FY 2002-2004 direct project costs include projects funded by alternative sources



# Infrastructure Where are we?



#### Current Situation

- Loads growing steadily at 1.8% per year
- Little new transmission since 1987

#### Objectives of BPA Infrastructure Plan

- Keep the lights on reinforce the system to comply with national reliability standards
- Interconnect needed new generation
- Availability
- Remove constraints that limit economic trade & our ability to maintain the system





# Infrastructure How did we get here?

- We've used controls and communications to safely use the margin that was built in, but we've taken this about as far as we can
- Deregulation has created different users and results in unusual generation patterns
  - Reliability criteria changes due to market pressures
  - Gaming occurs which is detrimental to system
- The western interconnection's energy crisis isn't just a generation issue -- it's also the transmission system needed to move it around
- California Market conditions are stressing the interties
   BONNEY And existing congested paths

#### **Transmission Line Construction**



#### **Operating Circuit Miles**



### Infrastructure Transmission Needs







# Existing & Proposed NW Constrained Paths



**Figure 1: NW Constrained Paths** 









#### Infrastructure Solution



#### The proposed projects:

- Reinforce the load centers
- Integrate needed generation
  - Depending on which plants are built -
  - Can integrate between 8000 to 12000 MW
- Relieve crippling congestion
  - Focus on NW constrained paths
  - Reduces price volatility
- Put some reliability margin back into the grid
  - Reduce vulnerability to cascading electrical outages
  - Allow outages for maintenance



#### **INFRASTRUCTURE PROJECTS G-20**







#### Area & Customer Service

- Driven by customer needs –improve reliability to customers at the edges of the grid
- Under run in FY00 and FY01 due to contractual issues
- Expect to complete targeted program in FY02
- Difficult to forecast for out years







#### TBL Capital Upgrades & Additions

- Addition/replacement of Remedial Action Schemes (RAS) to integrate new generation and relief constrained paths
- Completion of fiber optics facilities to provide bandwidth capacity and high speed data transfers
- New systems at Control Centers for both marketing
   & operational functions







#### System Replacement Program

- Completed and planned system replacements based on 10-year Replacement Plan 2001-2015 (1999)
- Replacement plan based on vintage, maintenance cost, and availability of spare parts for transformers, breakers, bushings, ct/pts, communications/control equipment, and wood poles
- Annual replacement budget includes \$10 million for emergency







## Photo – damaged conductor







## Photo – failed bushing







#### Wood Pole Replacement Strategy

- Need to replace 2500 poles per year in order to replace problem poles (30,000) by 2015 (butt tested)
- An average replacement of 1600 per year limited by resources and outages required
- Program costs are about \$4 million in 2002
   and expected to continue through 2015







### Photo- wood pole replacement







#### **Pole Vintage Chart**

| Year | Cedar Poles<br>Service Years |       |        |        |       | Fir Poles<br>Service Years |       |       |       |     |
|------|------------------------------|-------|--------|--------|-------|----------------------------|-------|-------|-------|-----|
|      | < 40                         | 41-50 | 51-60  | 61-70  | 70>   | < 40                       | 41-50 | 51-60 | 61-70 | 70> |
| 2002 | 981                          | 7,639 | 10,336 | 4,827  | 30    | 3,611                      | 5,891 | 1,042 | 0     | 0   |
| 2010 | 573                          | 605   | 10,056 | 12,549 | 30    | 1,665                      | 2,082 | 5,961 | 836   | 0   |
| 2015 | 445                          | 299   | 1,536  | 14,576 | 6,957 | 1,493                      | 895   | 5,744 | 2,409 | 3   |

Average life of cedar pole: 60

years

Average life of fir pole; 55 years







#### Breakers Replacement Strategy

- Propose to replace 60 breakers per year for both fault duty and maintenance
- Priority on those prone to violent failure and high maintenance cost (two pressure gas puffer and air blast breakers)
- Life extension measures applied as needed







#### Photo – failed breaker





## **Breaker Vintage Chart**

| Voltage | >50 Yrs | >30 Yrs | >15 Yrs | >5 Yrs | Repl Costs<br>per PCB |
|---------|---------|---------|---------|--------|-----------------------|
| 15      | 25      | 102     | 70      | 93     | \$45 K                |
| 34.5    | 1       | 5       | 22      | 17     | \$71 K                |
| 69      | 2       | 21      | 27      | 54     | \$85 K                |
| 115     | 0       | 123     | 138     | 272    | \$150 K               |
| 230     | 0       | 95      | 113     | 306    | \$250 K               |
| 500     | 0       | 5       | 67      | 219    | \$600 K               |

NOTE: Average Breaker Life: 30 Years







#### Summary

- Capital Program in four categories
  - Main grid
  - Local service
  - Upgrades & additions
  - Replacements
- Five main purposes
  - Reinforce load centers
  - Integrate needed new generation
  - Relieve crippling congestion
  - Keep the lights on
  - Business systems (E-Tagging, OASIS, billing)

